10 research outputs found

    Gas chromatography vs. quantum cascade laser-based N<sub>2</sub>O flux measurements using a novel chamber design

    Get PDF
    Recent advances in laser spectrometry offer new opportunities to investigate the soil–atmosphere exchange of nitrous oxide. During two field campaigns conducted at a grassland site and a willow field, we tested the performance of a quantum cascade laser (QCL) connected to a newly developed automated chamber system against a conventional gas chromatography (GC) approach using the same chambers plus an automated gas sampling unit with septum capped vials and subsequent laboratory GC analysis. Through its high precision and time resolution, data of the QCL system were used for quantifying the commonly observed nonlinearity in concentration changes during chamber deployment, making the calculation of exchange fluxes more accurate by the application of exponential models. As expected, the curvature values in the concentration increase was higher during long (60 min) chamber closure times and under high-flux conditions (FN2O &gt; 150 ”g N m−2 h−1) than those values that were found when chambers were closed for only 10 min and/or when fluxes were in a typical range of 2 to 50 ”g N m−2 h−1. Extremely low standard errors of fluxes, i.e., from â€‰âˆŒâ€‰â€Ż0.2 to 1.7 % of the flux value, were observed regardless of linear or exponential flux calculation when using QCL data. Thus, we recommend reducing chamber closure times to a maximum of 10 min when a fast-response analyzer is available and this type of chamber system is used to keep soil disturbance low and conditions around the chamber plot as natural as possible. Further, applying linear regression to a 3 min data window with rejecting the first 2 min after closure and a sampling time of every 5 s proved to be sufficient for robust flux determination while ensuring that standard errors of N2O fluxes were still on a relatively low level. Despite low signal-to-noise ratios, GC was still found to be a useful method to determine the mean the soil–atmosphere exchange of N2O on longer timescales during specific campaigns. Intriguingly, the consistency between GC and QCL-based campaign averages was better under low than under high N2O efflux conditions, although single flux values were highly scattered during the low efflux campaign. Furthermore, the QCL technology provides a useful tool to accurately investigate the highly debated topic of diurnal courses of N2O fluxes and its controlling factors. Our new chamber design protects the measurement spot from unintended shading and minimizes disturbance of throughfall, thereby complying with high quality requirements of long-term observation studies and research infrastructures

    ORCHIDEE-PEAT (revision 4596), a model for northern peatland CO2, water, and energy fluxes on daily to annual scales

    Get PDF
    Peatlands store substantial amounts of carbon and are vulnerable to climate change. We present a modified version of the Organising Carbon and Hydrology In Dynamic Ecosystems (ORCHIDEE) land surface model for simulating the hydrology, surface energy, and CO2 fluxes of peatlands on daily to annual timescales. The model includes a separate soil tile in each 0.5 degrees grid cell, defined from a global peatland map and identified with peat-specific soil hydraulic properties. Runoff from non-peat vegetation within a grid cell containing a fraction of peat is routed to this peat soil tile, which maintains shallow water tables. The water table position separates oxic from anoxic decomposition. The model was evaluated against eddy-covariance (EC) observations from 30 northern peatland sites, with the maximum rate of carboxylation (V-cmax) being optimized at each site. Regarding short-term day-to-day variations, the model performance was good for gross primary production (GPP) (r(2) = 0.76; Nash-Sutcliffe modeling efficiency, MEF = 0.76) and ecosystem respiration (ER, r(2) = 0.78, MEF = 0.75), with lesser accuracy for latent heat fluxes (LE, r(2) = 0.42, MEF = 0.14) and and net ecosystem CO2 exchange (NEE, r(2) = 0.38, MEF = 0.26). Seasonal variations in GPP, ER, NEE, and energy fluxes on monthly scales showed moderate to high r(2) values (0.57-0.86). For spatial across-site gradients of annual mean GPP, ER, NEE, and LE, r(2) values of 0.93, 0.89, 0.27, and 0.71 were achieved, respectively. Water table (WT) variation was not well predicted (r(2) <0.1), likely due to the uncertain water input to the peat from surrounding areas. However, the poor performance of WT simulation did not greatly affect predictions of ER and NEE. We found a significant relationship between optimized V-cmax and latitude (temperature), which better reflects the spatial gradients of annual NEE than using an average V-cmax value.Peer reviewe

    Non-microbial CH<sub>4</sub> production from soils and its dependency on soil components

    No full text

    Non-microbial methane formation in oxic soils

    No full text
    Methane plays an important role as a radiatively and chemically active gas in our atmosphere. Until recently, sources of atmospheric methane in the biosphere have been attributed to strictly anaerobic microbial processes during degradation of organic matter. However, a large fraction of methane produced in the anoxic soil layers does not reach the atmosphere due to methanotrophic consumption in the overlaying oxic soil. Although methane fluxes from aerobic soils have been observed, an alternative source other than methanogenesis has not been identified thus far. &lt;br&gt;&lt;/br&gt; Here we provide evidence for non-microbial methane formation in soils under oxic conditions. We found that soils release methane upon heating and other environmental factors like ultraviolet irradiation, and drying-rewetting cycles. We suggest that chemical formation of methane during degradation of soil organic matter may represent the missing soil source that is needed to fully understand the methane cycle in aerobic soils. Although the emission fluxes are relatively low when compared to those from wetlands, they may be important in warm and wet regions subjected to ultraviolet radiation. We suggest that this methane source is highly sensitive to global change

    Spatio-temporal variability and controls on methane and nitrous oxide in the Guadalquivir Estuary, Southwestern Europe

    No full text
    Estuaries are significant methane (CH4) and nitrous oxide (N2O) emitters, although dynamics of both greenhouse gases in these ecosystems are regulated by complex processes. In this work, we aimed at characterizing the spatio-temporal distribution of CH4 and N2O in the Guadalquivir river estuary (SW Spain), the southernmost European estuary. During eight sampling cruises conducted between 2016 and 2017, surface water CH4 and N2O concentrations were measured along the salinity gradient of the estuary by using static-head space equilibration gas chromatography. The CH4 and N2O saturation ranges over the estuarine transect were 520–30,800% (average 2285%) and 40–390% (average 183%), respectively and air–water fluxes ranged from 13 to 1000 ”mol m− 2 day− 1(average 66.2 ”mol m− 2 day− 1) for CH4 and from − 7 to 35 ”mol m− 2 day− 1 (average 8.5 ”mol m− 2 day− 1) for N2O. A slight increase in the emissions was detected upstream and no seasonal trends were observed. Mixing between freshwater and oceanic waters influenced biogeochemistry of estuarine waters, affecting CH4 and N2O fluxes. In order to identify potential sources of CH4 and N2O, biogeochemical parameters involved in the formation pathways of both gases, such as salinity, dissolved oxygen, nutrients and organic matter were analyzed. Results suggested that sulfate inhibition and microbial oxidation played a relevant role in dissolved CH4 accumulation in the water column whereas associations found between N2O, nitrate and oxygen indicated that nitrification was a major source of this gas. Therefore, the influence of the tidal-fluvial interaction on ecosystem metabolism regulates trace gas dynamics in the Guadalquivir estuary.This research was funded by the project 1539/2015 from the Spanish Ministry for Agriculture, Food and Environment.Peer reviewe
    corecore